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Abstract. We propose a geometric growth model for weighted scale-free networks, which is controlled by
two tunable parameters. We derive exactly the main characteristics of the networks, which are partially
determined by the parameters. Analytical results indicate that the resulting networks have power-law
distributions of degree, strength, weight and betweenness, a scale-free behavior for degree correlations,
logarithmic small average path length and diameter with network size. The obtained properties are in
agreement with empirical data observed in many real-life networks, which shows that the presented model
may provide valuable insight into the real systems.

PACS. 89.75.Hc Networks and genealogical trees – 02.10.Ox Combinatorics; graph theory – 89.75.Da
Systems obeying scaling laws – 89.20.-a Interdisciplinary applications of physics

1 Introduction

Complex networks [1–6] describe a number of real-life sys-
tems in nature and society, such as Internet [7], World
Wide Web [8], metabolic networks [9], protein networks
in the cell [10], worldwide airport networks [11,12], co-
author networks [13–16] and sexual networks [17]. Since
the publication of the pioneering papers by Watts and
Strogatz on small-world networks [18] and Barabási and
Albert on scale-free networks [19], modeling real-life sys-
tems has attracted an exceptional amount of attention
within the physics community [1–6].

Up to now, the research on modeling real-life systems
has been primarily focused on binary networks, i.e., edges
among nodes are either present or absent, represented as
binary states. The purely topological structure of binary
networks, however, misses some important attributes of
real-world networks. Actually, many real networked sys-
tems exhibit a large heterogeneity in the capacity and the
intensity of the connections, which is far beyond Boolean
representation. Examples include strong and weak ties be-
tween individuals in social networks [13–16], the varying
interactions of the predator-prey in food networks [20],
unequal traffic on the Internet [7] or of the passengers in
airline networks [11,12]. These systems can be better de-
scribed in terms of weighted networks, where the weight
on the edge provides a natural way to take into account
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the connection strength. In the last few years, modeling
real systems as weighted complex networks has been an
interesting subject of research.

The first evolving weighted network model was pro-
posed by Yook et al. (YJBT model) [21], where the topol-
ogy and weight are driven by only the network con-
nection based on preferential attachment (PA) rule. In
reference [22], a generalized version of the YJBT model
was presented, which incorporates a random scheme for
weight assignments according to both the degree and the
fitness of a node. In the YJBT model and its generaliza-
tion, edge weights are randomly assigned when the edges
are created, and remain fixed thereafter. These two mod-
els overlook the possible dynamical evolution of weights
occurring when new nodes and edges enter the systems.
On the other hand, the evolution and reinforcements of
interactions is a common characteristic of real-life net-
works, such as airline networks [11,12] and scientific col-
laboration networks [13–16]. To better mimic the reality,
Barrat, Barthélemy, and Vespignani introduced a model
(BBV model) for the growth of weighted networks that
couples the establishment of new edges and nodes and the
weights’ dynamical evolution [23,24]. The BBV model is
based on a weight-driven dynamics [25] and on a weights’
reinforcement mechanism, it is the first weighted network
model that yields a scale-free behavior for the weight,
strength, and degree distributions. Enlightened by BBV’s
remarkable work, various weighted network models have
been proposed to simulate or explain the properties found
in real systems [26–32].
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While a lot of models for weighted networks have
been presented, most of them are stochastic [4]. Stochas-
ticity present in previous models, while according with
the major properties of real-life systems, makes it diffi-
cult to gain a visual understanding of how do different
nodes relate to each other forming complex weighted net-
works [33]. It would therefore of major theoretical interest
to build deterministic weighted network models. Deter-
ministic network models allow one to compute analytically
their features, which play a significant role, both in terms
of explicit results and as a guide to and a test of simu-
lated and approximate methods [33–55]. So far, the first
and the only deterministic weighted network model has
been proposed by Dorogovtsev and Mendes (DM) [56]. In
the DM model, only the distributions of the edge weight,
of node degree and of the node strength are computed,
while other characteristics are omitted.

In this paper, we introduce a deterministic model for
weighted networks using a recursive construction. The
model is controlled by two parameters. We present an
exhaustive analysis of many properties of our model,
and obtain the analytic solutions for most of the fea-
tures, including degree distributions, strength distribu-
tion, weight distribution, betweenness distribution, degree
correlations, average path length, and diameter. The ob-
tained statistical characteristics are equivalent with some
random models (including BBV model).

2 The model

The network, controlled by two parameters m and δ, is
constructed in a recursive way. We denote the network
after t steps by Q(t), t ≥ 0 (see Fig. 1). Then the network
at step t is constructed as follows. For t = 0, Q(0) is an
edge with unit weight connecting two nodes. For t ≥ 1,
Q(t) is obtained from Q(t−1). We add mw (m is positive
integer) new nodes for either end of each edge with weight
w, and connect each of mw new nodes to one end of the
edge by new edges of unit weight; moreover, we increase
weight w of the edge by mδw (δ is positive integer). In the
special case δ = 0, it becomes binary networks, where all
edges are identical [38,45,60].

Let us consider the total number of nodes Nt, the total
number of edges Et and the total weight of all edges Wt

in Q(t). Denote nv(t) as the number of nodes created at
step t. Note that the addition of each new node leads to
only one new edge, so the number of edges generated at
step t is ne(t) = nv(t). By construction, for t ≥ 1, we have

nv(t) = 2mWt−1, (1)

Et = Et−1 + nv(t), (2)

and
Wt = Wt−1(1 + mδ) + 2mWt−1. (3)

On the right-hand side of equation (3), the first item is
the sum of weight of the old edges, and the second term
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Fig. 1. Illustration of a deterministically growing network in
the case of m = 2 and δ = 1, showing the first three steps of
growing process. The bare edges denote the edges of weight 1.

describe the total weight of the new edges generated in
step t. We can simplify equation (3) to yield

Wt = (1 + mδ + 2m)Wt−1. (4)

Considering the initial condition W0 = 1, we obtain

Wt = (1 + mδ + 2m)t. (5)

Substituting equation (5) into equation (1), the number
of nodes created at step t (t ≥ 1) is obtained to be

nv(t) = 2m(1 + mδ + 2m)t−1. (6)

Then the total number of nodes present at step t is

Nt =
t∑

ti=0

nv(ti)

=
2

2 + δ

[
(1 + mδ + 2m)t + δ + 1

]
. (7)

Combining equation (6) with equation (2) and considering
E0 = 1, it follows that

Et =
1

2 + δ

[
2 (1 + mδ + 2m)t + δ

]
. (8)

Thus for large t, the average node degree kt = 2Et/Nt

and average edge weight wt = Wt/Et are approximately
equal to 2 and (2 + δ)/2, respectively.

3 Network properties

Below we will find that the tunable parameters m and δ
control some relevant characteristics of the weighted net-
work Q(t). We focus on the weight distribution, strength
distribution, degree distribution, degree correlations, be-
tweenness distribution, average path length, and diameter.
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3.1 Weight distribution

Note that all the edges emerging simultaneously have the
same weight. Let we(t) be the weight of edge e at step t.
Then by construction, we can easily have

we(t) = (1 + mδ)we(t − 1). (9)

If edge e enters the network at step τ , then we(τ) = 1.
Thus

we(t) = (1 + mδ)t−τ . (10)
Therefore, the weight spectrum of the network is discrete.
It follows that the weight distribution is given by

P (w)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ne(0)
Et

=
δ+2

2(1+mδ+2m)t+δ
for τ = 0,

ne(τ)
Et

=
2m(2+δ)(1+mδ+2m)τ−1

2(1+mδ+2m)t+δ
for τ ≥ 1,

0 otherwise
(11)

and that the cumulative weight distribution [3,34] is

Pcum(w) =
∑

µ≤τ

ne(µ)
Et

=
2(1 + mδ + 2m)τ + δ

2(1 + mδ + 2m)t + δ
. (12)

Substituting for τ in this expression using τ = t− lnw
ln(1+mδ)

gives

Pcum(w) =
2(1 + mδ + 2m)tw− ln(1+mδ+2m)

ln(1+mδ) + δ

2(1 + mδ + 2m)t + δ

≈ w− ln(1+mδ+2m)
ln(1+mδ) for large t. (13)

So the weight distribution follows a power law with the
exponent γw = 1 + ln(1+mδ+2m)

ln(1+mδ) .

3.2 Strength distribution

In a weighted network, a node strength is a natural gener-
alization of its degree. The strength si of node i is defined
as

si =
∑

j∈Ωi

wij , (14)

where wij denotes the weight of the edge between nodes i
and j, Ωi is the set of all the nearest neighbors of i. The
strength distribution P (s) measures the probability that
a randomly selected node has exactly strength s.

Let si(t) be the strength of node i at step t. If node i is
added to the network at step ti, then si(ti) = 1. Moreover,
we introduce the quantity ∆si(t), which is defined as the
difference between si(t) and si(t−1). By construction, we
can easily obtain

∆si(t) = si(t) − si(t − 1)

= mδ
∑

j∈Ωi

wij + m
∑

j∈Ωi

wij

= mδsi(t − 1) + m si(t − 1). (15)

Here the first item accounts for the increase of weight
of the old edges incident with i, which exist at step t −
1. The second term describe the total weight of the new
edges with unit weight that are generated at step t and
connected to node i.

From equation (15), we can derive following recursive
relation:

si(t) = (1 + mδ + m)si(t − 1). (16)

Using si(ti) = 1, we obtain

si(t) = (1 + mδ + m)t−ti . (17)

Since the strength of each node has been obtained explic-
itly as in equation (17), we can get the strength distribu-
tion via its cumulative distribution [3,34], i.e.

Pcum(s) =
∑

µ≤ti

nv(µ)
Nt

=
(1 + mδ + 2m)ti + δ + 1
(1 + mδ + 2m)t + δ + 1

. (18)

From equation (17), we can derive ti = t − ln s
ln(1+mδ+m) .

Substituting the obtained result of ti into equation (18)
gives

Pcum(s) =
(1 + mδ + 2m)t s−

ln(1+mδ+2m)
ln(1+mδ+m) + δ + 1

(1 + mδ + 2m)t + δ + 1

≈ s−
ln(1+mδ+2m)
ln(1+mδ+m) for large t. (19)

Thus, node strength distribution exhibits a power law be-
havior with the exponent γs = 1 + ln(1+mδ+2m)

ln(1+mδ+m) .

3.3 Degree distribution

The most important property of a node is the degree,
which is defined as the number of edges incident with the
node. Similar to strength, in our model, all simultaneously
emerging nodes have the same degree. Let ki(t) be the de-
gree of node i at step t. If node i is added to the graph
at step ti, then by construction ki(ti) = 1. After that, the
degree ki(t) evolves as

ki(t) = ki(t − 1) + m si(t − 1), (20)

where msi(t − 1) is the degree increment ∆ki(t) of node
i at step t. Substituting equation (17) into equation (20),
we have

∆ki(t) = m (1 + mδ + m)t−1−ti . (21)

Then the degree ki(t) of node i at time t is

ki(t) = ki(ti) +
t∑

η=ti+1

∆ki(η)

=
(mδ + 1 + m)t−ti + δ

δ + 1
. (22)
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Equations (22) and (17) show a linear relation between
the strength si(t) and degree ki(t) as:

si(t) = (δ + 1) ki(t) − δ. (23)

Analogously to computation of cumulative strength dis-
tribution, one can find the cumulative degree distribution

Pcum(k) =
(1 + mδ + 2m)t [(δ + 1) k − δ]−

ln(1+mδ+2m)
ln(1+mδ+m)

(1 + mδ + 2m)t + δ + 1

+
δ + 1

(1 + mδ + 2m)t + δ + 1

≈ [(δ + 1) k]−
ln(1+mδ+2m)
ln(1+mδ+m) for large t. (24)

Thus, the degree distribution is scale-free with the same
exponent as γs, that is γk = γs = 1 + ln(1+mδ+2m)

ln(1+mδ+m) .

3.4 Betweenness distribution

Betweenness of a node is the accumulated fraction of the
total number of shortest paths going through the given
node over all node pairs [14,57]. More precisely, the be-
tweenness of a node i is

bi =
∑

j �=i�=k

σjk(i)
σjk

, (25)

where σjk is the total number of shortest path between
node j and k, and σjk(i) is the number of shortest path
running through node i.

Since the considered network here is a tree, for each
pair of nodes there is a unique shortest path between
them [58–60]. Thus the betweenness of a node is simply
given by the number of distinct shortest paths passing
through the node. From equations (21) and (22), we can
easily derive that for α < θ the number of nodes with
degree (mδ+1+m)α+δ

δ+1 which are direct children of a node

with degree (mδ+1+m)θ+δ
δ+1 is m(1 + mδ + m)θ−1−α. Then

at time t, the betweenness of a θ-generation-old node v,
which is created at step t − θ, denoted as bt(θ) becomes

bt(θ) = Cθ
t

[
Nt −

(Cθ
t + 1

)]
+
(Cθ

t

2

)

−
θ−1∑

α=1

m(1 + mδ + m)θ−1−α

(Cα
t + 1
2

)
, (26)

where Cθ
t denotes the total number of descendants of node

v at time t, where the descendants of a node are its chil-
dren, its children’s children, and so on. Note that the de-
scendants of node v exclude v itself. The first term in equa-
tion (26) counts shortest paths from descendants of v to
other vertices. The second term accounts for the shortest
paths between descendants of v. The third term describes
the shortest paths between descendants of v that do not
pass through v.

To find bt(θ), it is necessary to explicitly determine the
descendants Cθ

t of node v, which is related to that of v′s
children via [60]

Cθ
t =

θ∑

α=1

m(1 + mδ + m)α−1
(Cθ−α

t + 1
)
. (27)

Using C0
t = 0, we can solve equation (27) inductively,

Cθ
t =

1
δ + 2

[
(mδ + 1 + 2m)θ − 1

]
. (28)

Substituting the result of equations (28) and (7) into equa-
tion (26), we have

bt(θ) � 2
(δ + 2)2

(mδ + 1 + 2m)t+θ. (29)

Then the cumulative betweenness distribution is

Pcum(b) =
∑

µ≤t−θ

nv(µ)
Nt

=
(1 + mδ + 2m)t−θ + δ + 1
(1 + mδ + 2m)t + δ + 1

� (1 + mδ + 2m)t

(1 + mδ + 2m)t+θ
∼ Nt

b
∼ b−1, (30)

which shows that the betweenness distribution exhibits
a power law behavior with exponent γb = 2, the same
scaling has been also obtained for the m = 1 case of the
Barabási-Albert (BA) model describing a random scale-
free treelike network [58,59].

3.5 Degree correlations

Degree correlation is a particularly interesting subject in
the field of network science [61–66], because it can give rise
to some interesting network structure effects. An interest-
ing quantity related to degree correlations is the average
degree of the nearest neighbors for nodes with degree k,
denoted as knn(k) [62,63]. When knn(k) increases with k,
it means that nodes have a tendency to connect to nodes
with a similar or larger degree. In this case the network is
defined as assortative [64,65]. In contrast, if knn(k) is de-
creasing with k, which implies that nodes of large degree
are likely to have near neighbors with small degree, then
the network is said to be disassortative. If correlations are
absent, knn(k) = const.

We can exactly calculate knn for the networks using
equation (22) to work out how many links are made at a
particular step to nodes with a particular degree. We place
emphasis on the particular case of δ = 0. Except for the
initial two nodes generated at step 0, no nodes born in the
same step, which have the same degree, will be linked to
each other. All links to nodes with larger degree are made
at the creation step, and then links to nodes with smaller
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degree are made at each subsequent steps. This results in
the expression [36,42] for k = (m + 1)t−ti

knn(k) =
1

nv(ti)k(ti, t)

( t′i=ti−1∑

t′i=0

m · nv(t′i)k(t′i, ti−1)k(t′i, t)

+
t′i=t∑

t′i=ti+1

m · nv(ti)k(ti, t′i − 1)k(t′i, t)

)
, (31)

where k(ti, t) represents the degree of a node at step t,
which was generated at step ti. Here the first sum on the
right-hand side accounts for the links made to nodes with
larger degree (i.e. t′i < ti) when the node was generated at
ti. The second sum describes the links made to the current
smallest degree nodes at each step t′i > ti.

Substituting equations (6) and (22) into equation (31),
after some algebraic manipulations, equation (31) is sim-
plified to

knn(k) =
2m + 1

m

[
(m + 1)2

2m + 1

]ti

− m + 1
m

+
m

m + 1
(t − ti). (32)

Thus after the initial step knn grows linearly with time.
Writing equation (32) in terms of k, it is straightfor-

ward to obtain

knn(k) =
2m + 1

m

[
(m + 1)2

2m + 1

]t

k−
ln

[
(m+1)2
2m+1

]

ln(m+1)

− m + 1
m

+
m

m + 1
ln k

ln(m + 1)
. (33)

Therefore, knn(k) is approximately a power law function of
k with negative exponent, which shows that the networks
are disassortative.

Additionally, for other values of δ > 0, one can easily
check that the networks will be also disassortative with re-
spect to degree because of the lack of connections between
nodes with the same degree. In Figure 2, we present the
simulation results of knn(k) as a function of k for various
values of δ > 0. In all cases of different δ, knn(k) exhibit
a power-law dependence on the degree k, which again in-
dicate that networks are disassortative mixing.

In a weighted network, one can define the weighted
average degree of the nearest neighbors of node i as [11]

kw
nn,i =

1
si

∑

j∈Ωi

wijkj . (34)

The global weighted degree correlations of the network are
the following

kw
nn(k) = 〈kw

nn,i〉k, (35)

where the subscript k emphasizes the fact that the average
is taken only over nodes i with degree k. The behavior of
the function kw

nn(k) marks the weighted assortative or dis-
assortative properties considering the actual interactions

Fig. 2. (Color online) Log-log graph of knn(k) as a function of
k for network Q(7) with m = 2 and various δ.

Fig. 3. (Color online) Log-log graph of kw
nn(k) as a function of

k for network Q(7) with m = 1 and various δ.

among the systems’s elements. We perform numerical sim-
ulations of network Q(7) with m = 1 and different δ > 0.
The results are reported in Figure 3, which show that
kw
nn(k) also exhibits a disassortative behavior as knn(k).

We also make a comparison between knn(k) and
kw
nn(k). In Figure 4, we show the comparison result for

Q(9) with m = 1 and two different δ. From Figure 4, it
is obvious that kw

nn(k) > knn(k), which implies that edges
with larger weights are pointing to neighbors with large
degree [11].

3.6 Diameter

Most real-life systems are small-world, i.e., they have a
logarithmic average path length (APL) with the number
of their nodes. Here APL means the minimum number of
edges connecting a pair of nodes, averaged over all node
pairs. For general m and δ, it is not easy to derive a closed
formula for the average path length of Q(t). However, for
the particular case of m = 1 and δ = 0, the network
has a self-similar structure, which allows one to calculate
the APL analytically. In the Appendix, we show the de-
tailed exact derivation about APL for this special case, the
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Fig. 4. (Color online) Comparison between kw
nn(k) and knn(k)

for network Q(9) with m = 1 and different δ.

solution indicates that the APL grows logarithmically
with the number of nodes.

Although we do not give a closed formula of APL of
Q(t) for general m and δ, here we will provide the exact
result of the diameter of Q(t) denoted by Diam(Q(t)) for
all m and δ, which is defined as the maximum of the short-
est distances between all pairs of nodes. Small diameter is
consistent with the concept of small-world. The obtained
diameter also scales logarithmically with the network size.
Now we present the computation details as follows.

Clearly, at step t = 0, Diam(Q(0)) is equal to 1.
At each step t ≥ 1, we call newly-created nodes at this
step active nodes. Since all active nodes are attached to
those nodes existing in Q(t−1), so one can easily see that
the maximum distance between arbitrary active node and
those nodes in Q(t−1) is not more than Diam(Q(t−1))+1
and that the maximum distance between any pair of ac-
tive nodes is at most Diam(Q(t − 1)) + 2. Thus, at any
step, the diameter of the network increases by 2 at most.
Then we get 2(t + 1) as the diameter of Q(t). Note that
the logarithm of the size of Q(t) is approximately equal to
t ln(1 + mδ + 2m) in the limit of large t. Thus the diame-
ter is small, which grows logarithmically with the network
size.

4 Conclusion

In summary, we have introduced and investigated a deter-
ministic weighted network model in a recursive fashion,
which couples dynamical evolution of weight with topo-
logical network growth. In the process of network growth,
edges with large weight gain more new links, which occurs
in many real-life networks, such as scientific collaboration
networks [13–16]. We have obtained the exact results for
the major properties of our model, and shown that it can
reproduce many features found in real weighted networks
as the famous BBV model [23,24]. Our model can pro-
vide a visual and intuitional scenario for the shaping of
weighted networks. We believe that our study could be
useful in the understanding and modeling of real-world
networks.

The results presented here are inevitably only the be-
ginning of the study of deterministic weighted networks.
The networks studied here are trees. In fact, real-world
systems show ubiquitous loop structure and high clus-
tering. In future, it is interesting to construct other de-
terministic models with large clustering coefficient. One
the other hand, in contrast to the linear relation between
the strength and degree of nodes in this model, some real
networks show a power-law strength-degree correlations.
It also deserves research to build deterministic network
models to mimic this interesting class of systems.
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Appendix A: Exact solution of average path
length for a particular case of m = 1
and δ = 0

For simplicity, we denote this limiting network (m = 1
and δ = 0) after t generations by Qt. Then the average
path length of Qt is defined to be:

d̄t =
Dt

Nt(Nt − 1)/2
. (A.1)

In equation (A.1), Dt denotes the sum of the total dis-
tances between two nodes over all pairs, that is

Dt =
∑

i,j∈Qt

di,j , (A.2)

where di,j is the shortest distance between node i and j.
We can exactly calculate d̄t according to the self-

similar network structure [47]. As shown in Figure A.1,
the network Qt+1 may be obtained by joining at the hubs
(the most connected nodes) three copies of Qt, which we
label Q

(α)
t , α = 1, 2, 3 [45,67]. Then one can write the sum

over all shortest paths Dt+1 as

Dt+1 = 3Dt + ∆t, (A.3)

where ∆t is the sum over all shortest paths whose end-
points are not in the same Qt branch. The solution of
equation (A.3) is

Dt = 3t−1D1 +
t−1∑

τ=1

3t−τ−1∆τ . (A.4)

The paths that contribute to ∆t must all go through at
least either of the two hubs (A and B) where the three
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Fig. A.1. (Color online) The network growth process for a
non-weighted network. (a) The first four steps of binary net-
work growth for the limiting case of m = 1 and δ = 0
are shown. (b) The network after t + 1 generation, Qt+1,
can be obtained by joining three copies of generations t (i.e.

Q
(1)
t , Q

(2)
t , Q

(3)
t ) at the two hub nodes of highest degree, de-

noted by A and B.

different Qt branches are joined. Below we will derive the
analytical expression for ∆t named the crossing paths,
which is given by

∆t = ∆1,2
t + ∆2,3

t + ∆1,3
t , (A.5)

where ∆α,β
t denotes the sum of all shortest paths with

endpoints in Q
(α)
t and Q

(β)
t . If Q

(α)
t and Q

(β)
t meet at an

edge node, ∆α,β
t rules out the paths where either endpoint

is that shared edge node. If Q
(α)
t and Q

(β)
t do not meet,

∆α,β
t excludes the paths where either endpoint is any edge

node.

By symmetry, ∆1,2
t = ∆2,3

t , so that

∆t = 2∆1,2
t + ∆1,3

t , (A.6)

where ∆1,2
t and ∆1,3

t are given by the sum

∆1,2
t =

∑

i∈Q
(1)
t , j∈Q

(2)
t

i,j �=A

di,j (A.7)

and

∆1,3
t =

∑

i∈Q
(1)
t , j∈Q

(3)
t

i�=A, j �=B

di,j , (A.8)

respectively. In order to find ∆1,2
t and ∆1,3

t , we define

dtot
t ≡

∑

Z∈Q
(2)
t

dZ,A,

dnear
t ≡

∑

Z∈Q
(2)
t

dZ,A<dZ,B

dZ,A, Nnear
t ≡

∑

Z∈Q
(2)
t

dZ,A<dZ,B

1,

dfar
t ≡

∑

Z∈Q
(2)
t

dZ,A>dZ,B

dZ,A, N far
t ≡

∑

Z∈Q
(2)
t

dZ,A>dZ,B

1, (A.9)

where Z �= A. Since A and B are linked by one edge, for
any node i in the network, di,A and di,B can differ by at
most 1, then we can easily have dtot

t = dnear
t + dfar

t and
Nt = Nnear

t + N far
t + 1. By symmetry Nnear

t + 1 = N far
t .

Thus, by construction, we obtain

Nt = 2 (Nnear
t + 1). (A.10)

Combining this with equation (7), we obtain partial quan-
tities in equation (A.9) as

N far
t − 1 = Nnear

t =
1
2
(
3t − 1

)
. (A.11)

Now we return to the quantity ∆1,2
t and ∆1,3

t , both of
which can be further decomposed into the sum of four
terms as

∆1,2
t =

∑

i∈Q
(1)
t , j∈Q

(2)
t

i,j �=A

di,j

=
∑

i∈Q
(1)
t , j∈Q

(2)
t , i,j �=A

di,A>di,A1 , dj,A>dj,B

(di,A + dj,A)

+
∑

i∈Q
(1)
t , j∈Q

(2)
t , i,j �=A

di,A<di,A1 , dj,A>dj,B

(di,A + dj,A)

+
∑

i∈Q
(1)
t , j∈Q

(2)
t , i,j �=A

di,A>di,A1 , dj,A<dj,B

(di,A + dj,A)

+
∑

i∈Q
(1)
t , j∈Q

(2)
t , i,j �=A

di,A<di,A1 , dj,A<dj,B

(di,A + dj,A)

= 2(Nt − 1)(dnear
t + dfar

t ), (A.12)
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and

∆1,3
t =

∑

i∈Q
(1)
t , j∈Q

(3)
t

i�=A, j �=B

di,j

=
∑

i∈Q
(1)
t , j∈Q

(3)
t , i�=A, j �=B

di,A>di,A1 , dj,B>dj,B1

(di,A + dj,A + 1)

+
∑

i∈Q
(1)
t , j∈Q

(3)
t , i�=A, j �=B

di,A<di,A1 , dj,B>dj,B1

(di,A + dj,A + 1)

+
∑

i∈Q
(1)
t , j∈Q

(3)
t , i�=A, j �=B

di,A>di,A1 , dj,B<dj,B1

(di,A + dj,A + 1)

+
∑

i∈Q
(1)
t , j∈Q

(3)
t , i�=A, j �=B

di,A<di,A1 , dj,B<dj,B1

(di,A + dj,A + 1)

= 2(Nt − 1)(dnear
t + dfar

t ) + (Nt − 1)2, (A.13)

respectively. Having ∆1,2
n and ∆1,3

n in terms of the quan-
tities in equation (A.9), the next step is to explicitly de-
termine these quantities unresolved.

Considering the self-similar structure of the graph, we
can easily know that at time t+1, the quantities dnear

t+1 and
dfar

t are related to each other, both of which evolve as
{

dnear
t+1 = dfar

t + 2 dnear
t ,

dfar
t = dnear

t + N far
t .

(A.14)

From the two recursive equations we can obtain
⎧
⎪⎨

⎪⎩

dnear
t =

1
12
(−3 + 31+t + 2t · 3t

)
,

dfar
t =

1
12
(
3 + 32+t + 2t · 3t

)
.

(A.15)

Substituting the obtained expressions in equations (A.11)
and (A.15) into equations (A.12), (A.13) and (A.6), the
crossing paths ∆t is obtained to be

∆t = 7 · 9t + 2t · 9t. (A.16)

Inserting equation (A.16) into equation (A.4) and using
D1 = 10, we have

Dt = 3−1+t
(
1 + 2 · 3t + t · 3t

)
. (A.17)

Substituting equations (7) and (A.17) into (A.1), the exact
expression for the average path length is obtained to be

d̄t =
2 (1 + 2 · 3t + t · 3t)

3 (1 + 3t)
. (A.18)

In the infinite network size limit (t → ∞),

d̄t � 2
3

t +
4
3
∼ ln Nt, (A.19)

which means that the average path length shows a loga-
rithmic scaling with the size of the network.
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